Distinctive interactions at multiple site 2 subsites by allele-specific rat and mouse ly49 determine functional binding and class I MHC specificity.
نویسندگان
چکیده
Rodent Ly49 exhibit allele-specific MHC I recognition, yet the interaction site, site 2, encompassing the area below the MHC peptide-binding groove, the alpha3 domain, and associated beta(2) microglobulin, is highly conserved among rat and mouse MHC I alleles. We previously demonstrated that allele-specific Ly49 recognition can be affected by polymorphisms specifically in the peptide anchor-binding and supertype-defining B pocket of MHC I, possibly through differential conformations assumed by solvent-exposed interaction residues when articulating with this pocket. Through mutagenesis of RT1-A1(c) and H-2D(d), we map for the first time the interaction site(s) on rat MHC I mediating rat Ly49i2 recognition and the previously unexamined Ly49G(BALB/c) interaction with H-2D(d). We demonstrate that rat Ly49i2 and mouse Ly49G use both unique and common interactions at three MHC I H chain subsites to mediate functional binding and allele-specific recognition. We find that the F subsite, formed by solvent-exposed residues below the more conserved C-terminal anchor residue-binding F pocket, acts as an anchoring location for both Ly49i2 and Ly49G, whereas these receptors exhibit distinctive reliance on solvent-exposed residues articulating with the polymorphic anchor-binding and supertype-defining pocket(s) at subsite B, as well as on interaction residues at subsite C in the MHC I alpha3 domain. Our findings, combined with previous Ly49A/H-2D(d) and Ly49C/H-2K(b) cocrystal data, suggest how allele-specific MHC I conformations and Ly49 polymorphisms may affect Ly49 placement on MHC I ligands and residue usage at site 2, thereby mediating allele-specific recognition at the highly conserved MHC I interface.
منابع مشابه
Cross-species dependence of Ly49 recognition on the supertype defining B-pocket of a class I MHC molecule.
Ly49 recognition of MHC class I (MHC I) can be allele specific. However, the site of interaction on MHC I consists of highly conserved solvent-exposed amino acids, leaving it unclear how allele specificity occurs. In examining the specificity of mouse and rat Ly49, we noticed that MHC I ligands for mouse Ly49G and W, and the rat Ly49i2, typically share the HLA-B7 supertype, defined by a B-pocke...
متن کاملIdentities of P2 and P3 Residues of H-2Kb-Bound Peptides Determine Mouse Ly49C Recognition
Ly49 receptors can be peptide selective in their recognition of MHC-I-peptide complexes, affording them a level of discrimination beyond detecting the presence or absence of specific MHC-I allele products. Despite this ability, little is understood regarding the properties that enable some peptides, when bound to MHC-I molecules, to support Ly49 recognition, but not others. Using RMA-S target c...
متن کاملCumulative inhibition of NK cells and T cells resulting from engagement of multiple inhibitory Ly49 receptors.
Inhibitory receptors specific for MHC class I molecules are expressed on partially overlapping subpopulations of NK cells and memory T cells. A central question pertinent to NK cell development and function is how the combinatorial expression of different receptors with distinct class I specificities affects functional recognition. We therefore studied the quantitative effects resulting from cl...
متن کاملDirect assessment of MHC class I binding by seven Ly49 inhibitory NK cell receptors.
Mouse NK cells express at least seven inhibitory Ly49 receptors. Here we employ a semiquantitative cell-cell adhesion assay as well as class I/peptide tetramers to provide a comprehensive analysis of specificities of Ly49 receptors for class I MHC molecules in eight MHC haplotypes. Different Ly49 receptors exhibited diverse binding properties. The degree of class I binding was related to the ex...
متن کاملMHC-dependent shaping of the inhibitory Ly49 receptor repertoire on NK cells: evidence for a regulated sequential model.
Engagement of MHC class I-specific inhibitory receptors regulates natural killer (NK) cell development and function. Using both new and previously characterized anti-Ly49 monoclonal antibodies, we comprehensively determined expression and co-expression frequencies of four Ly49 receptors by NK cells from MHC-congenic, MHC class I-deficient, and Ly49A-transgenic mice to study mechanisms that shap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of immunology
دوره 179 10 شماره
صفحات -
تاریخ انتشار 2007